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Stability to infinitesimal disturbances, when a parallel magnetic field is imposed, 
is investigated for the free boundary-layer type flows, of low magnetic Reynolds 
number, between two unbounded parallel streams of a viscous, incompressible, 
electrically conducting fluid. Neutral stability curves are calculated for small 
wave-number making use of the limiting profile: previous results by another 
author are found to be incomplete. A qualitative neutral stability picture is 
conjectured for other values of the wave-number and, granted a certain part of 
this conjecture, the conclusion is that the critical Reynolds number remains 
zero until the parameter QlR exceeds the value (Q/R)crit + 0.0233. It is suggested 
that a sufficiently strong magnetic field can stabilize a flow of any finite Reynolds 
number. 

1. Introduction 
Beginning with an investigation by Lessen (1950), the hydrodynamic stability 

of free boundary-layer profiles has been studied by several authors. Out of their 
work has emerged the information (see Tatsumi & Gotoh 1960) that the critical 
Reynolds number of these profiles is zero, and that the ratio R/a of the Reynolds 
number to the wave-number of the neutrally stable disturbance tends to the 
constant 1/4 43 as a+& 

Our main concern here is to discover how a uniform magnetic field in the flow 
direction affects this zero critical Reynolds number when the flow is that of an 
electrically conducting fluid. An investigation of this has previously been carried 
out by Gotoh (1961), but owing to very elaborate manipulations involved in his 
analysis Gotoh failed to elicit an important piece of information, namely another 
existing branch of the neutral stability curve. Also, he considered the effects of 
two-dimensional disturbances only, which at  the time of publication of his paper 
were incorrectly thought to be the most destabilizing. Thus Gotoh’s work un- 
covered only partially the effects of the magnetic field and he came to incorrect 
conclusions regarding the distribution of the stablelunstable regions. 

Since in the region of real interest the wave-number a is small we thought it 
most appropriate to use an approach suggested by Drazin (1961). As a first 
method of attack we found it to be most rewarding, for it simplified the analysis 
enormously, it yielded information previously missed, and it suggested lines of 
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inquiry which might be pursued using more sophisticated analysis. Drazin, in 
the paper we refer to, interpreted the use of certain simple, and sometimes physi- 
cally inconsistent, velocity profiles as ' limiting profiles ' which may legitimately 
be used for finding stability characteristics in the limit of small wave-number. 
Mathematically speaking, he proved that the same eigenvalues c are obtained 
when for a given velocity profile the wave-number tends to zero or alternatively 
when the limiting profile is considered, the limiting profile being the one obtained 
by letting the length scale tend to zero. Following Drazin we have used the limit- 
ing profile for the free boundary-layer flows, which is the Helmholtz profile, to 
discover their stability characteristics in the region of small wave-numbers. 

2. The mathematical formulation 
Let the steady state in the flow of an incompressible fluid of uniform conduc- 

tivity u, density p,  kinematic viscosity v and magnetic permeability p, charac- 
terized by a velocity (g(x2), 0, 01 and a uniform magnetic field ( H ,  O,O), be dis- 
turbed by a small velocity and a small magnetic field, respectively of the form 

Then it can be shown (see Stuart 1954) that the equation governing the dis- 
turbance, when the magnetic Reynolds number is assumed to be small, takes the 
form 

(2.1) 
1 

(U  - c )  (q5" - / 3 2 $ )  - Vq5 +iaQd = WXR (#' - 2/32@' + p 4 4 ) .  

Dashes in the above denote differentiation with respect to y which along with 
the other dimensionless quantities has been obtained by writing 

(2.2) I Y = x2/& U(Y) = q x 2 ) / u , ,  d = V2lU0, 
cc = alL, c = iola,U,, 

p = LJ(a2,+ag), R = U,L/v, 

R,  = 4 n p ~ U ,  L, A = J(p14np) HIU,, Q = A2Rm. 

In  (2.2) U, and L denote suitably chosen reference quantities for the velocity 
and the length scales respectively. 

By writing 
aR = $R and a& = $&, 

or alternatively 
R = Rcos8 and Q = Qcos8, 

where 8 = tan-l(a3/a1), it is easily seen that the three-dimensional problem 
associated with (2.1) is immediately reduced to an equivalent two-dimensional 
problem (see Stuart 1954). In  what follows below we shaIl first consider the effects 
of two-dimensional disturbances. Later in $ 5  when we come to consider the 
effects of three-dimensional disturbances we shall replace our R and Q by R cos 8 
and Q cos 8 respectively, as dictated by the transformations (2.3). 
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3. The two-dimensional disturbances 
Consider for the moment two-dimensional disturbances only in the basic flow 

u = YllYl ( -m < Y < m). (3.1) 

The most general solution of (2.1) (with p = a) satisfying the boundary condition 
that the disturbances should vanish at infinity is of the form 

where A,, A,, B,, B, are constants and 

(1  - c )  - -{a2R2( i 1 - c ) ~  + 4z2QR}*]*,) 
2 

n 1-[ - a2-- iaR 2 (1  + c )  + f {a2R2( 1 + c),  + 4a24?R}*r, I (3.3) 

(The square roots are taken to make the real part positive.) 
The boundary conditions to be satisfied by q5 and its derivatives on the surface 

of transition y = 0 are obtained by integrating (2.1) across this surface, and are 

} (3.4) 
[$I = 0, [$’I = 0, 

[$“ - iaR( 27 - C) $1 = 0,  [#”’ - iaR{( U - C )  $’ - V’$}] = 0, 

where [y]  denotes the jump in any quantity y in crossing y = 0. [Note. The 
problem of deciding on the boundary conditions when a physically inconsistent 
velocity profile is used in a method of approximation contains pitfalls. The 
reason for this is that the usual arguments about the continuity of stress, etc. 
cannot be applied. The author has discussed this, deriving two alternative sets of 
boundary condition for a problem, in the work referred to at the end as Abas 
(1967). Conditions (3.4) will also become clear if the reader will refer to the paper 
by Drazin (1961), where, by writing down the successive integrals, he derives 
the boundary conditions for the Orr-Sommerfeld equation.] 

The boundary conditions (3.4) at y = 0 give four homogeneous linear equations 
in A,, A,, B, and B,. A non-trivial solution exists if and only if the eliminant of 
these equations is zero, i.e. if 

I l I  
1 1 1 

n2 1 = 0. (3.5) - m1 - m2 n, 
m2, + iaR mg + iaR n2, - i a R  ni - iaR 

I - m! + iaRm, - mi + iaRm, n: + iaRn, n! + iaRnA 



( rn2-m1) 

(nz - n,) 

- 
n l = m l  and nZ=E,, 

and also 

1 - fm, + n,) 1 

rn; - ni + 2iaR 

m2, + mi + m1m2 - iaR - (mg + n!) + iaR(m2 - n,) n2, + n: + nln2 + iaR 
- (ml + m,) n1+ n2 

(3.7) 

(mz - m1) 

(mz + n,) 

(122 - n1) 

@+mi = 2a2+iaR, nt+ni  = 2a2-iaR, mi-n i  = i aR( l+T) ,  (3.8) 

ml + m2 +nl + n2 

nln, - mlmz 

a@,- n,) + (nl + n2) 

(a - 1) a2 + (2  - a) m,n, + nlnz 
= 0, (3.10) 

where T = (l+:)'. (3.9) 

Relationships (3.8) can now be used to simplify (3.6) resulting in 

(3.11) 

The only roots relevant to the problem are given by the factor in the deter- 

3 + T  
1+T' 

a=--- where we have written 

minant and expanding it we get 

(ml+nl) [(a- 1)a2+(3-2~)m,n, l+ (m,+n2)  [(a- 1)a2+m,nl+(2-a)m,n,] 

Dividing by a3 and writing 
+a[mlm~+nlni ]  = 0. (3.12) 

6 = R/a, (3.13) 

Now, from (2.1) making use of the fact that U is an odd function of y, it is 
fairly easy to show that the equation satisfied by $( - y), where a bar denotes a 
complex conjugate, is the same as (2.1) except that - c is replaced by C. We shall 
assume that for given values of a, R and Q the neutrally stable waves are 
characterized by a unique eigenvalue c. Then from the above it follows that 
c = -a, thus giving R,c = 0. [In the ordinary non-conducting case c, = 0 was 
shown to be the only root by Drazin (1961) by the explicit solution of the equiva- 
lent eigenvalue relationship. Hence another reason why c, = 0, in our case also, 
is the continuity of cr.] 

The curve of neutral stability is therefore charscterized by the condition 
c = 0 and at  this stage we shall restrict our analysis to the neutral case. 

We note then, from (3.3), that when c = 0 
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the equation becomes 

(mi + n;) [(a - 1) + (3 - 2a) lm61 + (mL + n4) [(a - 1) 

+ lm;12+(2-a) ImL12]+a[m;mL2+n;nL2] = 0. (3.15) 

All the terms occurring in (3.15) are real and, if we write 

mi = rleiyl, mh = r,eiya, 
then (3.15) becomes 

rl cos y,[(a - 1) + (3 -2a) 41 +T,  cos ?,[(a- 1) +rZ, + (2 -a) ri] 

+ arlT2 cos (yl + Zy,). (3.16) 

Solving for rl, r2, y1 and y2 in terms of 6 and T and then substituting in (3.16) 

where (3.18) 

We immediately note from (3.17) that, if T 2 3, then, since all the terms are 
positive, there can be no real values of 6 satisfying the equation. This means 
that c = 0 is not an eigenvalue if T > Tcrit, where 

1 < Tcrit < 3. (3.19) 

Equation (3.17) was solved numerically and gave 

Tcrit + 1.0456. (3.20) 

Next we show that the left-hand side of (3.17) has a different behaviour in the 

Let us write (3.17) as P(6,T)  = 0. Then, when T = 1 
case T = 1 (i.e. zero magnetic field) as compared with the case T > 1. 

F(6, I )  = 6 + 2 $( 1 + 21/( 1 + a'))& - 2 2/( 1 + 6,). (3.21) 

For large values of 6 a(&, 1) - 2 4 2  64- 26, 

and is seen to be negative. When 6 = 0,  F has the value 8, so that the equation 
F ( 6 , l )  = 0 is deemed to have an odd number of real positive roots. In  fact there 
is only one root 6 = 4 ,/3 as is easily found from (3.21) by squaring twice to 
eliminate radicals. This is as found by Esch (1957), Tatsumi & Gotoh (1960) 
and Drazin (1961). 

On the other hand, when T > 1, then for large values of 6 

F(6,T) N (T+1){T+(T2-1)*}6,  

and is seen to be positive. When 6 = 0, F has the value 4(T + 1) which is also 
positive, so that if real positive roots exist they must be even in number. 
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Equation (3.17) was solved numerically using a computer and was found to 
have two roots when 1 < T < Tcrit. The values obtained are shown graphically 
in figure 1. 

1 1.01 1.02 1.03 1.04 1.05 

T 

FIGURE 1. Eigenvalues of neutral stability. 

4. Conclusions from the results of $ 3  

when Q/R = 0 in the equation (3.17) gave the result 
We found that when Q/R < 1 a perturbation from the solution 6 = 4 43 

6 =  4 4 3 ( 1 + 7 ) ,  

R 
- = d3 ( + 13A2 ”-) 

R which is the same as a: (4.1) 

found by Gotoh (1961, no. 54, p. 567). Gotoh did not however consider the 
possibility of another root which for QlR < 1 is extremely large. Owing to this 
omission his speculations on the distributions of the stable and the unstable 
regions, and his conclusion that the magnetic field, to begin with, has no influence 
on very long wave disturbances, are incorrect. 

From our results, the curves of neutral stability for small values of cx are as 
shown in figure 2. The existence of two values of R/a for the same value of &/R 
implies that the unstable region, if it occurs for a value of &/R, is contained within 
the stable region. 
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The unstable region shrinks as Q/R increases and disappears when it exceeds 

Thus, contrary to the conclusion of Gotoh (1961), we find that the stabilizing 
influence of the magnetic field is felt immediately on disturbances of very long 
wavelengths and also on ones of shorter wavelengths. Also, we note that, although 
the unstable region shrinks with an increasing magnetic field, the minimum 
critical Reynolds number (we suspect the existence of a maximum critical Rey- 
nolds number, see 5 6) remains zero until Q/R reaches its critical value when the 
flow is stabilized. 

U 
0.01 

R 

FIGURE 2. Curves of neutral stability for two-dimensional disturbances. 

5. Modification of results for three-dimensional disturbances 
So far we have considered only two-dimensional disturbances in the basic 

flow. If we now replace Q by Q cos 8 and R by R cos 8 , 8  being the angle at which 
a three-dimensional disturbance propagates with respect to the basic flow, 
then the same value of T increases S by the factor l/cosB. In  figure 3 we have 
plotted the neutral curves for Q/R = 0.02 and for 8 = 0" and 60". For 8 > 0 
the neutral curves are always pulled towards the R-axis though the rotation 
produced in the two branches is not uniform. The unstable region still disappears 
for the same critical value of QIR. We conclude, therefore, that for small values 
of the wave-number the free boundary-layer type flows are stable if 

Q/R > (Q/R)crit = 0.0233. 

6. Stability characteristics for other values of a 
Although our neutral stability curves are applicable for small values of a 

only, we can use this fractional information to draw a highly plausible qualita- 
tive picture in the rest of the (a,R)-plane. 
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From comparison with related work on flows with solid boundaries where 
complete neutral curves have been worked out (see, for example, Abas 1968), 
it seems most likely that for 0 < Q / R  < (Q/R)crit the two-dimensional analysis 

R 

FIGURE 3. Curves of neutral stability for Q/R = 0.02 and 0 = 0", 60". 
/3 is the wave-number in the 8-direction. 

QlR = 0 

U 

0 

R 

FIGURE 4. Conjectured form of the neutral stability curves for Q/R > 0. 

yields neutral curves that are closed, as shown in figure 4. It should of course be 
clear that as far as the action of viscosity is concerned the mechanism of in- 
stability in the case of semi-bounded or bounded flows is very different from that 
of an unbounded flow, hence the reason for small aR in the stability characteris- 
tics of the latter. However, it would be expected that the action of the magnetic 
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field on the stability characteristics of the two would be similar. It is therefore 
most probable that in our case the magnetic field yields a zero minimum critical 
Reynolds number but there is also a maximum critical Reynolds number beyond 

R R 

QlR 

FIGURE 5. Stability limits for two- 
dimensional disturbances. 

40 - 

30 - 

R 
20 - 

Unstable Stable 

(Q/R) crit 

QlR 
FIGURE 6. Stability limits for three- 

dimensional disturbances. 

Unstable 

Stable 

0 1 2 3 4 5 
M 

FIGURE 7. The critical Reynolds number in terms of rM. 

which the flow is stable to all two-dimensional disturbances. The value of the 
maximum critical Reynolds number, unlike the minimum critical Reynolds 
number, will most probably be different for different profiles. The neutral curves 
shrinkin area as QlRincreases from zero and disappear when QlRexceeds (Q/R)crit. 
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If the above conjecture is correct then the geometry of the stablelunstable 
regions in the (QfR, R)-plane is as shown in figure 5. 

When we come to consider three-dimensional disturbances then, as before, a 
typical point (Qo/R,, R,) will transform into the point (Q,/R,, R, eos 0) .  The 
point will therefore lie on a line parallel to R-axis such as the dotted line in figure 
5 .  It is easy to see that the point (Qo/R,, R,) belongs to the unstable region for 
some value of 0 if and only if Qo/R, < (Q/R)crit. If  therefore we do not restrict 
ourselves to the two-dimensional disturbances then the stable and the unstable 
regions are situated as in figure 6. 

We have also shown the unstable and the stable regions in the (&, R)-plane 
in figure 7 ,  where M is the parameter defined by 

Mote that M is proportional to the magnetic field H and, unlike &, is independent 
of the velocity term. The curve in the ( M ,  R)-plane is therefore more immediately 
instructive to the effect of the applied magnetic field. 

M 2  = QR. 

7. Closing comments 
Although we conjecture that the neutral stability curves when Q/R > 0 are 

closed curves our deduction that the flow is stable if Q/R exceeds (Q/R)crit is 
independent of this property. Even if the two branches go to infinity, so long 
as the unstable region shrinks in area and disappears when Q/R exceeds (Q/R)crJ 
the relationship in the (Q/R, R)-plane between regions stable and unstable to 
two-dimensional disturbances will be as shown in figure 6. For three-dimensional 
disturbances the point (Qo/R,, R,) transforms into the point (Q,,/R,, R, cos8) 
and therefore, since it moves parallel to the R-axis, cannot cross from one region 
into another. Thus the flow is still stable if Q/R > (QfR)crft. 

We conclude that providing the neutral curves completely disappear for 
(&/R) > (Q/R)crit all free boundary-layer type flows of low magnetic Reynolds 
number and of any fixed Reynolds number can be stabilized by imposing a 
sufficiently large parallel magnetic field. It is probably worth emphasizing that 
by a sufficiently large field we mean a field such that the parameter 
QfR (oc H2/U2) exceeds its critical value and that this critical value ( + 0.0233) 
is universally valid for all free boundary-layer flows. It should also be clear (see 
figure 7)  that for a given fixed magnetic field the flow is never stable for all values 
of the Reynolds number. This result is the same as that obtained by Hunt (1966 
for the case of flows contained within solid boundaries. 

Finally we should like to remark that the closure of the neutral stability 
curves, reflecting the stabilizing effect of a parallel field on the larger as well as 
the shorter unstable wavelengths, seems to be a common feature in the stability 
characteristics calculated SO far. There is, however, as yet no mathematical 
analysis which has shown this to be a universal feature and an attack on this 
seems to be now due. 

The work reported here was carried out in 1965 when the author was a research 
student at University College London and was included in a part of his Ph.D. 
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thesis submitted t o  the University of London in March 1967. The author wishes to  
thank Dr D. H. Michael who throughout this piece of research gave helpful 
guidance and from whose remarks on Esch’s (1957) boundary condition the 
author’s interest in the stability of free boundary-layer flows was aroused. 
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